Recall that you can graph the values from a ratio table.

Time, \boldsymbol{x} (seconds)	Height, \boldsymbol{y} (meters)
3	2
6	4
9	6
12	8

The structure in the ratio table shows why the graph has a constant rate of change. You can use the constant rate of change to show that the graph passes through the origin. The graph of every proportional relationship is a line through the origin.

EXAMPLE
 1 Determining Whether Two Quantities Are Proportional

Use a graph to tell whether x and y are in a proportional relationship.
a.

x	2	4	6
\boldsymbol{y}	6	8	10

Plot $(2,6),(4,8)$, and $(6,10)$.
Draw a line through the points.

Proportions

In this extension, you will

- use graphs to determine whether two ratios form a proportion.
- interpret graphs of proportional relationships.

The graph is a line that does not pass through the origin.
\therefore So, x and y are not in a proportional relationship.
b.

\boldsymbol{x}	1	2	3
\boldsymbol{y}	2	4	6

Plot $(1,2),(2,4)$, and $(3,6)$.
Draw a line through the points.

The graph is a line that passes through the origin.
$\therefore \quad$ So, x and y are in a proportional relationship.

Practice

Use a graph to tell whether x and y are in a proportional relationship.

1. | \boldsymbol{x} | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| \boldsymbol{y} | 3 | 4 | 5 | 6 |
2.

\boldsymbol{x}	1	3	5	7
\boldsymbol{y}	0.5	1.5	2.5	3.5

EXAMPLE

2 Interpreting the Graph of a Proportional Relationship

The graph shows that the distance traveled by the Mars rover Curiosity is proportional to the time traveled. Interpret each plotted point in the graph.
$(0,0)$: The rover travels 0 inches in 0 seconds.

Study Tip

In the graph of a proportional relationship, you can find the unit rate from the point $(1, y)$.
(1, 1.5): The rover travels 1.5 inches in 1 second. So, the unit rate is 1.5 inches per second.

Curiosity Rover at Top Speed

$(3,4.5):$ The rover travels 4.5 inches in 3 seconds. Because the relationship is proportional, you can also use this point to find the unit rate.

$$
\frac{4.5 \mathrm{in} .}{3 \mathrm{sec}}=\frac{1.5 \mathrm{in} .}{1 \mathrm{sec}}, \text { or } 1.5 \text { inches per second }
$$

Practice

Interpret each plotted point in the graph of the proportional relationship.

3.

4.

Tell whether x and y are in a proportional relationship. If so, find the unit rate.
5.

\boldsymbol{x} (hours)	1	4	7	10
\boldsymbol{y} (feet)	5	20	35	50

6. Let y be the temperature x hours after midnight. The temperature is $60^{\circ} \mathrm{F}$ at midnight and decreases $2^{\circ} \mathrm{F}$ every $\frac{1}{2}$ hour.
7. REASONING The graph of a proportional relationship passes through $(12,16)$ and $(1, y)$. Find y.
8. MOVIE RENTAL You pay $\$ 1$ to rent a movie plus an additional $\$ 0.50$ per day until you return the movie. Your friend pays $\$ 1.25$ per day to rent a movie.
a. Make tables showing the costs to rent a movie up to 5 days.
b. Which person pays an amount proportional to the number of days rented?
